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To understand the imaging of the sea surface by radar, it is useful to know the 
theoretical variations in the wavelength and steepness of short gravity waves 
propagated over the surface of a train of longer gravity waves of finite amplitude. 
Such variations may be calculated once the orbital accelerations and surface 
velocities in the longer waves have been accurately determined - a non-trivial 
computational task. 

The results show that the linearized theory used previously for the longer waves 
is generally inadequate. The fully nonlinear theory used here indicates that for longer 
waves having a steepness parameter AK = 0.4, for example, the short-wave steepness 
can be increased at the crests of the longer waves by a factor of order 8, compared 
with its value at the mean level. (Linear theory gives a factor less than 2.) 

The calculations so far reported are for free, irrotational gravity waves travelling 
in the same or directly opposite sense to the longer waves. However, the method of 
calculation could be extended without essential difficulty so as to include effects of 
surface tension, energy dissipation due to short-wave breaking, surface wind-drift 
currents, and to arbitrary angles of wave propagation. 

1. Introduction 
An important component of radar backscatter from the sea surface arises from the 

Bragg scattering. This involves surface wavelengths of the order of a few centimetres 
for X-band radars, or tens of centimetres for L-band. In both cases the wavelengths 
are usually small compared to the dominant wavelengths of ocean surface waves (10 
to lo3 m). So it becomes an important question to study how the short-wave energy 
is distributed with respect to the phase of the longer waves. 

In the present study we shall consider the classical model of a short train of gravity 
waves, of small but variable steepness uk, propagated over the surface of a longer 
train of gravity waves of finite steepness AK, as in figure 1. Early workers 
(Longuet-Higgins t Stewart 1960) assumed that AK -4 1, and in that case i t  was 
found that the variation in the wavenumber k and amplitude u of the short waves, 
in deep water, was given by 

I k 
- - 1 + AK cos $h + O(AK)2, E -  
U = U = 1 + AK cos $h + O(AK)2, 



294 M .  S. Longuet-Higgins 

Y 

0 

4 
2x/  K * 

FIQURE 1. Definition sketch for short waves on long waves. The origin of y is chosen so that 
qa + 2gy = 0 on the free surface. 

where k and 6 are the (constant) values of k and a at the mean surface level and 
$ = K(x-Ct )  is the phase of the long waves. This gives 

ak 
Zk 1 + 2AK cos $ + O(AK)2, (1.2) -- = 

showing that the short waves are both shorter and steeper on the crests of the longer 
waves ($ = 2nn). However, since AK < (AK),,, = 0.4432 the maximum steepening 
predicted is less than 2. 

Longuet-Higgins & Stewart (1960) interpreted equations ( 1 . 1 )  by assuming (i) that 
the phase of the short waves was conserved, i.e. that 

k q - a  = constant, (1.3) 

where q is the particle speed in the long waves as seen by an observer travelling with 
the long-wave speed C ,  and a is the intrinsic frequency of the short waves in a frame 
moving with speed q ;  next, (ii) that the intrinsic frequency a and local wavenumber 
k of the short waves were related by 

a2 = g'k, (1.4) 

where g' was the effective value of gravity for the short waves, i.e. 

aW 
9' = 9+7$ 

W being the vertical component of orbital velocity in the long waves; and (iii) that 
the short-wave energy density E was given by 

representing the potential and kinetic energies respectively. The changes in short- 
wave energy E over the long wave could then be attributed to (a)  advection by the 
long-wave orbital velocities, together with ( b )  work done by the straining of the long 
waves against the radiation stress of the short waves. 
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Garrett (1967) suggested that the same results (1.1) could be interpreted in terms 
of the conservation of wave action 

where 
N = E / u ,  (1.7) 

E = %’a2 (1.8) 

is an alternative form of the short-wave energy density, and he introduced the 
equation 

where cg is the group-velocity of the short waves (cg = g). 
Finally, Bretherton t Garrett (1968) proved the validity of (1.9) for a general class 

of situations where a group of linearized short waves of wavenumber k is propagated 
through a slowly varying medium with local velocity q, under the general assumption 
that 

(1.10) 

the energy density E being defined as if the medium were locally uniform. 
The great advantage of this formulation is its relative simplicity, and that there 

is no explicit restriction on the steepness AK of the long waves; it appears necessary 
to assume only that 

ak < 1, k % K. (1.11) 

In the case of AK finite, one would take as the effective (vector) gravity 

g’ = g-a (1.12) 

where a is the orbital acceleration in the long wave. 
This principle has been partly applied (in principle) by Phillips (1981) to calculate 

the variation in amplitude of short capillary-gravity waves riding on longer gravity 
waves. The calculation could not be carried through in detail because the effective 
gravity g’ was not a t  that time known with sufficient accuracy. However, the accurate 
calculation of accelerations in steep gravity waves has recently been carried out by 
Longuet-Higgins (1985c), and from this it is possible to infer g’ by (1.12), hence both 
the shortening and steepening of the short waves. In this contribution we apply the 
results to short gravity waves, in the first place, with application particularly to 
backscattering in L-band. One significant result is that for finite values of AK the 
short-wave steepening can actually be much greater than that given by linear theory. 
Moreover, it will be seen that the basic calculation of g’ opens the way to the solution 
of other important problems, including the case when the short waves are strongly 
affected by capillarity. 

2. Formulation of the problem 
Relatively short gravity waves, of local height 2a and wavelength 2xlk, ride on 

longer, progressive gravity waves of finite height 2A and wavelength 2xlK in deep 
water, where k 2 K (see figure 1).  It is required to find k and ak as functions of the 
phase of the long wave. 

The intrinsic frequency u and the wavenumber k of the short waves are assumed 
to be related by (1.4), where g’ is the magnitude of the eflective acceleration g’ given 
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by (1.12). Clearly, since the pressure gradient has no component tangential to the 
free surface, g’ is always normal to the surface of the longer waves. The frequency 
u and the phase-speed 

are taken as positive or negative according as the short waves travel in the same or 
opposite direction to the long waves. p denotes the particle speed at the surface of 
the longer waves, as seen in a frame of reference moving with the long-wave phase 
speed C. In this reference frame the long waves appear steady and the free surface 
is a streamline. At  the mean level y = y, we have q = C; (see Lamb 1932, p. 420). 

To determine the wavenumber k at points along the surface of the long waves we 
assume that the phase of the short waves is conserved, that is 

c = u / k  (2.1) 

k(q -c )  = constant = K, (2.2) 

(2.3) 

say, Hence 

K -  ‘9’ ( q - C )  

or 
C 2  -k K-’g‘C - K- ‘g’p = 0. 

This is a quadratic equation for c with solutions 

9’ 
c = - B * ( p + 2 p q ) : ,  p=- .  2 K  

Having found c we may calculate k from (2.3) in the form k = g’/c2. 
To determine the local wave amplitude a, we assume that action is conserved, that 

is equation (1.9). In  the steady flow relative to the moving frame of reference this 
implies that the flux of wave action is a constant, i.e. 

E 
(q  - cg)  - = constant, 

U 

where cg the group velocity of the short waves (=  ?jc) and E is the intrinsic energy 
density of the short waves, given by (1.8). Since u = g’/c,  (2.6) can also be written 

or 
(p-+) ca2 = constant 

a cc [ (p-+)c]-:  

(cf. Longuet-Higgins & Stewart 1961). 
Finally, the local wave steepening is defined as 

r = a k / ( d )  (2.9) 
where a bar denotes the values at the mean level y = y. 

q and the orbital acceleration a in a (long) gravity wave of finite amplitude. 
Clearly the above approach depends upon the accurate evaluation of the velocity 

3. Method of calculation 
The rea2, or orbital acceleration in a surface wave must be carefully distinguished 

from the apparent accelerations as measured by a fixed vertical wave gauge (see 
Longuet-Higgins 1985~). The real accelerations, both vertical and horizontal, vary 
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much more smoothly than the apparent accelerations, which can be very 
non-sinusoidal. 

Numerical values of the real acceleration a were calculated by the method of 
Longuet-Higgins (1985~)  which makes use of a set of quadratic relations between the 
Fourier coefficients a, in Stokes’s series for the Cartesian coordinates (2, y )  in terms 
of the velocity potential. Thus if K = g = 1, and the free surface is given by 

00 

y=a,+za,cos - 3 

1 

x=-+Za,s in  4 “  
C l  

where 4 is the velocity potential, then the coefficients a,, a,, a2, ... satisfy the 
relations 

(3.2) I a,b,+a,b,+a,b,+a,b,+ ... = - c 2 ,  

alb,+a,b,+a,b2+a2b,+ ... = 0 ,  

a,b,+albl+a,b2+alb,+ ... = 0,  

with b, = nu,, n > 0 and b, = 1. These relations may be quickly and accurately 
solved for a given value of the phase-speed c (in general) or of the wave amplitude 

A = a,+a,+a,+ ... . (3.3) 

4% = -2  Y ?  (3.4) 

(3.5) 

where z = x+iy and x = $+ill., @ the stream function. (An asterisk denotes the 
complex conjugate.) In real terms this is 

The speed q at the free surface is then found from the Bernoulli relation 

and the vector acceleration a from the general relation 

* - - 6 2  * 
Q = X z X z z  - 4 Z X Z X , y  

a = - qs(z4 + iy4)2(z64 - i y4&. (3.6) 

The effective gravity g’ is then found from (1.12). 
Because of the slow initial rate of convergence of the series (3.1) at high values of 

AK, care must be taken to include enough terms in these series. A recent study 
(Longuet-Higgins 1985b) has shown that after an initial rate of convergence like n-j, 
a, ultimately converges exponentially, the transition to exponential behaviour 
occurs when n = n, = O ( E - ~ ) ,  where 

€2 = 2.0lAK- (AK)maxl. (3.7) 

Since individual terms in the differentiated series for x+4 and y6$ at first increase like 
d, it is important, in order to ensure sufficient accuracy in the calculation, to include 
terms with n somewhat in excess of n,. 

Surface profile corresponding to AK = 0.1, 0.2, 0.3, 0.4 and the limiting value 
AK = 0.4432 are shown in figure 2. The corresponding values of the effective gravity 
9’ are shown in figure 3. It will be seen that when AK = 0.4 these range from 0.659 
at the crest of the wave (x = 0) to about 1.319 in the wave trough. 
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FIGURE 2. Surface profiles of gravity waves in deep water, when AK = 0.1, 0.2, 0.3, 0.4 and 
0.4432. 

1.2 1 c 
ak = 0.4 e 

FIGURE 3. The effective value of gravity g’ at the surface of steep waves, aa a function of the 
horizontal coordinate xlL. 

4. Results: variation in short-wave length 
Using suffices 1 and 2 to denote values a t  the long-wave crest and trough 

respectively, figure 4 shows the relative shortening kJE at the crests of the long waves 
as compared to the mean surface level, in the three cases when Z= 2, 10 and 100. 
Similarly k,/E shows the lengthening in the long-wave troughs. For values of AK up 
to 0.2 the three curves corresponding to 6 = 2,lO and 100 are almost indistinguishable, 
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FIGURE 4. The relative shortening of short waves at the crests ( k J E )  and in the troughs (ka/E) of 
long wavea, aa compared to the mean level, when c > 0. Note K = 1. 
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and even when AK = 0.4 there is little departure from the representative curve 
k = 10, when k l /E  = 3.0 and k2/E = 0.82. Thus, the short-wave length varies over a 
range of about 3; to 1. This is for c > 0, when the short waves travel in the same 
sense as the longer waves. Figure 5 shows a similar plot when c < 0, and the short 
waves travel in the opposite sense. Here the variation in k is only slightly less. 
However, as AK-+(AK),,, it  can be shown that kJL+ 00 when c > 0, but remains 
finite when c < 0. 

5. Variation in the wave steepness 

manner to figures 4 and 5.  Thus 
Figures 6 and 7 show the variation in steepening r of the shorter waves, in a similar 

Again the three curves corresponding to k = 2, 10 and 100 lie very close together, 
showing that not only the wavelength variation but also the steepness variation is 
practically independent of short-wave length. 

When AK = 0.4, however, the short-wave steepness may vary by a factor of as 
much as 8 between the long-wave crests and the mean level. This compares with a 
factor less than 2 given by linear theory. 

The variation of steepness r over the profile of the long waves is shown in figure 8 
as a function of x / L ,  and for different values of AK,  using the representative short 
wavenumber k = 8. Comparing AK = 0.4 with AK = 0.1, one sees the distorting 
effect of nonlinearity in the long waves. 
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FIGURE 8. The relative steepening r as a function of the horizontal coordinate x / L ,  
when E = 8, e > 0. 
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FIGURE 9. The relative steepening r as !function of the vertical coordinate ( y - % ) / L  when 
k = 8 , ~ > 0 .  

FIGURE 10. The effective value of gravity g’ at the surface of deep-water waves of limiting 
steepness. 

Finally, in figure 9 the three curves of figure 8 are plotted instead against ( y - j j ) /L ,  
that is the vertical height above the mean level jj. It, now appears that all the curves 
collapse almost onto a single curve. This property may be useful in approximate 
analytical work. The appropriate nonlinear steepening is quite different from the 
linear theory, shown in figure 9 by the broken curve. 
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o'6 t 
FIQURE 11.  (a) The surface profile near the crest of a steep gravity wave, scaled according to 

e2 = q:/2C. (b )  The effective value of gravity g' near the crest of a steep gravity wave. 

6. Limiting waves 
Our previous calculations have been carried only as far as AK = 0.4. In  this Section 

we shall consider the limiting behaviour of the solutions as AK+ (MQmaX, and the 
validity of the present approximations at large wave steepnesses. 

Consider first the effective acceleration g' in a limiting wave. In figure 10 g' /g is 
plotted against the horizontal coordinate x / L ,  using the computations by Williams 
(1981, Table 1 2 4 .  In  the wave troughs, g'/g = 1.301 and near the crests, since the 
surface slope tends to 30°, we have g'/g = 3i/2 = 0.866. A t  the crest itself, however, 
the downwards acceleration tends to 0.388 g (Williams 1981), so that g ' /g  = 0.612. 
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FIGURE 12. Graph to  illustrate the behaviour of the phaae-speed c, as given by (2.4). 

For near-limiting waves, the behaviour near the crest is given by the theory of the 
almost-highest wave (Longuet-Higgins & Fox 1977, 1978), which is valid when 

q2/c2 = 28  4 1 .  (6.1) 

In this approach we introduce scaled coordinates z, = z / e 2 ,  where z = x+iy, and a 
scaled velocity potential x, = x / e 3  where x = $+i+. Making use of the numerical 
coordinates of the free surface as given in table 3 of Longuet-Higgins & Fox (1977) 
we can easily calculate the radius of curvature R and hence the normal component 
of the particle acceleration 

aN = q2/R = 2gy/R (6.2) 

at each point on the surface and hence the value of 9'. This is shown in figure 11 (b), 
where 9/19 is plotted against x / 2 .  For comparison with the steepest wave in figure 2, 
(3.7) shows that when AK = 0.40, then 8 = 0.086. 

Now consider the propagation of short waves near the crest of a fairly steep 
longer wave. The values of the phase speed c for given values of q and K/g'  are shown 
in figure 12, cK/gf being plotted against qK/g' according to (2.4). Since q is always 
positive, the two roots (2.5) correspond to the branches OA and QB of the parabola 
respectively. In  fact the relevant sectors of the parabola are those lying between 
q = q1 and q = q2. For moderate wave steepnesses, q1 and q2 are of order C while 
K = k(C--F) is of order kC when k B 1. Hence q K / g f  is generally large. 

However, when the longer waves become steep, we have s+O, hence q/C+O. For 
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any finite value of l& suppose i t  were possible for the left-hand boundary in figure 12 
to approach the axis qK/g’ = 0. Then the positive root of (2.4) would give c - q, 
and so from (2.3) k - g‘/qz, independently of E. In other words the local wavelength 
2xlk of the short waves would be of order ea, comparable to the radius of curvature 
of the crest. Hence the short-wave approximation would not be applicable. Similar 
considerations apply even more strongly to the negative root of (2.4). 

For the short-wave approximation to remain valid we must have kc2 >> 1.  But since 
k = g‘/c2 and c2 = q2/2cZ this implies q2 % c2. Hence q/c is at least moderately large, 
and the region of interest in figure 12 lies well to the right, where qK/g’ S 1. This in 
turn means that we must have czEz % 1.  For example, when AK = 0.4 then kz 9 10. 
Thus in figures 4-7 only the plots corresponding to E = 10 and 100 are quantitatively 
valid, at this value of AK. 

Nevertheless some qualitative conclusions may be drawn. From figure 12 it is clear 
that the phase speed c and hence the lengthscale k-’ is always greater for oppositely 
travelling short waves approaching the long-wave crest than it is for short waves 
travelling in the positive direction. This suggests that there may be a real distinction 
between ‘spilling’ and ‘plunging’ breakers, the former being caused by forwards- 
travelling short-wave energy, and the latter by perturbations travelling in the 
opposite sense. 

7. Conclusions 
We have shown that by taking full account of the nonlinearity of the longer waves 

and by using the principle of action conservation for the shorter waves one can 
calculate accurately the short-wave steepening. This can be several times greater than 
that predicted by linear theory. The short-wave approximation cannot, however, be 
extended to long waves of limiting, or near-limiting, steepness. 

We note that according to our assumptions in (l.l),  the principle of action 
conservation is expected to be only an approximation. To test this principle, we 
have studied in another paper (Dysthe et al. 1987) a simple model in which the 
governing equations are ordinary differential equations capable of exact integration 
by numerical methods. The model suggests that action for the shorter waves is indeed 
conserved closely, though not precisely. 

All the results of the present paper depend upon a precise calculation of the local 
gravity g‘. Hence we have considered only the case when the short waves are pure 
gravity waves. However, it must be realized that the basic calculation of g’ for the 
long waves opens the way to a solution of other important problems, particularly 
the case when the short waves are capillary or capillary-gravity waves. A more 
general treatment is in progress which includes the dissipation of the short waves by 
breaking and the regeneration of the short waves by the wind. 

Most of the calculations contained in this paper were first presented in a report 
to the TOWARD Hydrodynamics Committee at the Naval Research Laboratory, 
Washington D.C. in October 1985. The report was prepared at the Cal. Tech. Jet  
Propulsion Laboratory, Pasadena, with the kind cooperation of Dr C. Elachi and 
Dr 0. H. Shemdin. 
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